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SECTION 1

INTRODUCTION

This report uses empirical results from a
cratering-type excavation project in coral as the basis
for an alternative interpretation of the important
processes in the formation of the Pacific Proving Grounds
(PPG) nuclear, surface-burst craters. The empirical
results are from a large, chemical, high-explosive harbor
project done in Hawaii in 1970. The harbor excavation
project, called Project Tugboat (Day 1972), was done to
demonstrate the feasibility of explosive excavation as a
construction technique and to model a nuclear explosive
excavation project as part of the Plowshare* Program.

The analysis and comparisons in this report
provide an empirical justification for the interpretation
of the difference between the observed nuclear surface-
burst cratering efficiency from the PPG craters and the
predicted cratering efficiency for nuclear surface bursts
over similar strength soil or rock material with no water
overburden. In this report, cratering in soil or rock
with no water overburden is referred to as continental
cratering. The alternative interpretation of the
cratering efficiency for the PPG events correlates well
with recent calculational efforts.

* Plowshare was the code name given to the program to
develop peaceful uses for nuclear explosives, primarily
the excavation of a sea-level "Panama" canal.
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The significance of Project Tugboat is that it
provided an opportunity to observe the detailed formation
process of the wide, flat, saucer-shaped craters which are
typical of the PPG tests. As a result of the high-speed
aerial photography and other technical programs, it was
possible to observe the initial throw-out crater, the
subsequent liquefaction and flowing of the material around
it, and then the settlement process. Contributing to the
ability to observe this formation process were the unique
conditions of the site, a saturated material, and water

overburden with no consequent dust cloud.

The Tugboat experiments strongly suggest that the
crater shapes and sizes observed in the PPG high-yield nuclear
tests are due to the physical properties of the medium in
which these tests were conducted, i.e., wet coral. It is
conjectured that the features of coral sites which are re-
sponsible for their characteristic craters are their complete
saturation and low density. The low density results from a
large, water-filled macroporosity of very high permeability

in a brittle coral matrix.

It is proposed that, in the formation of craters in
wet coral, the coral matrix is broken by the passage of the
strong shock. The collapse of the grain structure in the
saturated low density material leads to a separation of grains
and an accompanying loss of strength (this process is called
liquefaction). 1In this state, the broken coral should flow
easily and is expected to settle and reconsolidate to a state
of increased density and reduced porosity.

These effects, flow and settling or reconsolidation,
were both observed in the Tugboat event.




1-1 STATEMENT OF THE PROBLEM

The size of the crater and the resulting ground

motion from a nuclear surface burst are of critical

importance for predicting the survivability of friendly

structures as well as for predicting vulnerability

of enemy targets. The Defense Nuclear Agency has

F . been attempting for some time to calculate the expected

: ( cratering efficiency (volume/yield) for craters from

ii nuclear surface bursts. To aate, the calculational
efforts have resulted in predictions that are four to ten

] times smaller than those actually observed at PPG. Recent

Y . and projected increases in weapon delivery accuracy and

the imminent design requirements for the MX missile system

require a resclution of the discrepancy between analytical

1 cratering predictions and the apparent empirical results

from the PPG nuclear surface bursts.
I 1-2 CRATER CALCULATIONS AND EXPERIMENTS

Calculational approaches to predicting cratering
efficiency to date have been related to experience gained
in both nuclear and chemical high-explosive tests. The
nuclear test data available are primarily from the Nevada
Test Site (NTS). At NTS, seven nuclear explosive
excavation tests were conducted during the 1960's as part
of the Plowshare Program (Teller 1968). Most of these
nuclear detonations were at or near optimum depth-of-
burial and were in materials which differ considerably
from those at PPG. Numerous chemical high-explosive (HE)
surface-burst experiments have been conducted; however,
the physical processes involved in the crater formation
following a chemical explosion are a poor simulator of the
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processes involved following a nuclear detonation. There
is no prompt radiation coupling from an HE test. The high
pressure induced in the ground by a nuclear event during

the early hydrodynamic phase of the interaction cannot be
simulated by HE. The initial high air blast overpressure,
P > 100 MPa (15,000 psi), in the vicinity of the crater is
not reproduced in an HE event. The high air blast over-

pressures from a nuclear event may be critical in the PPG

crater formation process.

It is possible to calculate and predict crater
volume and dimensions relatively accurantely for buried
nuclear explosions in unsaturated rock and soils with no
water overburden (Roddy 1978). Buried and surface-burst
HE craters have also been predicted with good results
(Roddy 1978). The calculation for a buried explosion re-
sults in a displacement or "throw-out" crater with a bowl-
shaped cross section, as shown in Figure 1. Although this
type of cratering effect is present when detonating an ex-
plosive in or over a coral medium, the saturated, highly
porous nature of coral produces a final crater bearing
little relation to those from continental experience in
dry materials. Craters in saturated coral are generally
flat and saucer-shaped, with a volume considerably larger

than that predicted for continental cratering.




*aInjeIdouswou putmoys ‘abaeyo sarsoidxs
peTIng e wox3j Ix93exd 1edtdA3 © JO uOl3OVSS S$S0ID

*1 3xnb1g

abaeyd aatsordxs
Jo uotiedoy TeUIDTIO

Xoeqitred
Kxepunog

193010 BNIL
VRS
N

auoz aaniydny
>.u»/

10.!/|| L lllllllll
SRR
~ 2 () oiaz
punoxb soeyiang
e3oaflq

aoezins punoib feurbtao

Kxepunoq z23eao juaxeddy

asnaylxdn

g —

e — - - -
B TP N S TR N S Y T VT VY S YUy W Y. TR o




SECTION 2

HIGH-EXPLOSIVE HARBOR PROJECT

2-1 BACKGROUND

From 1962 through 1980, the U.S. Army Corps of
Engineers (CE) and the Atomic Energy Commission (AEC) con-
ducted a joint research program to develop the basic tech-
nology for use of nuclear explosives for construction
purposes (Kurtz 1968). The AEC, through the Plowshare
Division of the Lawrence Livermore Laboratory at Livermore,
California, was responsible for nuclear device development,
conduct of the nuclear cratering experiments, and develop-
ment of nuclear safety and crater size prediction tech-
niques. The U.S. Army Engineer Nuclear Cratering Group
(NCG), later called the Explosive Excavation Research
Laboratory (EERL), located at lLawrence Livermore Labora-
tory, conducted the Army portion of the program. The
program consisted of chemical high-explosive crater
modeling tests, engineering investigation of the craters
produced by the chemical and nuclear detonations, the
development of project designs and engineering construc-
tion data as a basis for nuclear cratering, and later,
chemical explosive excavation. In furtherance of this
latter technique to demonstrate the feasibility and
utility of the general technique of explosive excavation,
and to gain technical data to be used in the design of
other chemical or nuclear explosive excavation projects,
it was decided to perform a major, useful engineering

project using the technique. The project chosen was a




small boat harbor in Hawaii. It was code-named Project
Tugboat (Day 1972).

2

2 PREVIOUS EXPERIENCE

The Nuclear Cratering Group conducted 13 major
explosive excavation test series near Fort Peck, Montana,
from 1966 through 1969, under the code name Project Pre-
Gondola (LaFrenz 1970). The purpose of the experiments
was to establish the cratering characteristics of weak and
saturate¢ shale, to acquire row-charge cratering experi-
ence, and to demonstrate the feasibility of connecting a
row crater to a body of water. The clay shale site was
initially chosen to provide cratering experience in a
material similar to much of the soil type which existed in
sections of the routes being considered for an Atlantic-
Pacific sea-level canal. The original tests at Fort Peck
were designed to model a nuclear test, Gondola, which was
canceled. The cratering experience from Fort Peck
provided the original design basis for Project Tugboat.
The material properties of the clay shale were thought to
match those of the coral quite closely.

2-3 HARBOR SITE

Project Tugboat was planned to provide data that
could be used in both chemical and nuclear excavation
technology and to serve as a useful demonstration
project. It was designed to create an entrance channel
and a berthing basin for a small boat harbor as part of an
authorized U.S. Army Corps of Engineers Civil Works
Construction project at Kawaihae, Hawaii. Not only was it
to be the first major construction project using explosive

11




excavation, it was to be done in a coral material covered
with water, a medium in which no HE cratering experience

existed.

The Island of Hawaii, like all of the Hawaiian
'Islands, was constructed by the geological process of
volcanism, and is composed predominantly of basaltic rock.
In places along Hawaiian coasts where conditions are favor-
able, coral reefs have grown. Such conditions exist in
the Kawaihae area, so that the basic geologic situation at
the Tugboat site was one of a coral reef founded at some
depth upon basaltic rock, the latter being continuous with
the basalt which forms the adjacent land mass. The ocean
bottom at the site was very irregular because of the numer-
ous coral heads, some of which caused variations of as
much as 3.66 m (12 ft) within a few meters horizontally.

In general, water depths over the coral at the Tugboat site
ranged between 1 and 4 m.

The geology of the Tugboat site is essentially
that of the coral reef, since the underlying basalt
foundation lies at depths greater than any of the explo-
sive detonations and greater than any of the exploratory
borings drilled either before or after the shots. Coral
is the generic name for biogenic carbonate rocks made by
marine animals and plants. It is composed of the limy
skeletal materials secreted by numerous species of marine
invertebrate animals, and also by symbiotic lime-secreting
algae. Collectively these animals and plants form
colonies, and an assemblage of these colonies forms a
reef. A coral reef is a complicated ecological system,
and the limy material shows a complicated variety of

12




structures, even though the structures are all made of the
same material, calcium carbonate. Some colonies are mas-
sive and dome-like, some are branching and shrub-like, with
a fragile skeleton that is easily shattered or broken. The
substructure of a visible coral reef represents reef mate-
rials that grew in the past. Numerous animals besides the
actual coral-formers live in and around the coral reef.

On death, the calcareous remains of these organisms
(shells, spines, etc.) combine with broken parts of the
more fragile coral structures to form calcareous sand and
silt, which filter into and partially fill voids in the
coral framework. At some time in their geological evolu-
tion, reefs and their infilling sediment may, but do not
necessarily, become cemented together by deposition of a
calcareous cement, resulting in formation of a solid lime-
stone rock.

Longitudinal openings across the surface of a
reef, normal to the shore, are a common feature. These
"surge channels" occur at semiregular intervals, and have
dimensions of a few feet. The floors of such channels are
flat or slope gently seawcrZ, and are covered with coral
sand. Similar but larger channels occur opposite fresh
water springs or the mouths of fresh water streams. The
Kawaihae coral reef is typical of the generalized reef
described above.

A drilling program was carried out in June and
July of 1969 to investigate subsurface conditions at the
Project Tugboat site (Day 1972). Fifteen borings were drilled to
depths as great as 23.2 m (76 ft) below mean low-low water
(MLLW). A combination of splitspoon drive sampling, 0.1 m
(4 in) diameter, core drilling, and Denison sampling was




used. Some intervals were washed and jetted. Collec-
tively, 210 m (687 ft) (linear) of hole were drillea, ot
which 93 m (304 ft) were core drilled. All holes requirea
casing to their full depth except for the final drill run
or two. From the 93 m (304 ft) in which coring was at-
temptea, 37.5 m (123 ft) of material was recoverea (40
percent recovery). Only 2.14 m (7 ft) of core was
recovered in lengths of 0.15 m (6 in) or more, and the
longest piece recovered was 0.5 m (1.6 ft). The poor core
recovery is attributable to the discontinuous nature of
the reef structure, and is compatible with results
experienced during construction of the Kawaihae deep-draft
harbor.

The following is a summary of some of the testing
results on the coral cores:

Porosity: Solid intact samples, mean porosity

50 percent * 13 percent.
These results measure only the porosity of the
laboratory samples due to small voids within
the coral material. The porosity of the reef
woula be much greater, since it would be due
as well to the macroscopic voids between var-
ious coral branches, etc. 1In fact, all test
values are valid only for laboratory samples,
not for the reef mass as a whole, because of
the open, branching structure of the latter.
({In effect, the lab samples are not truly
representative of the reef mass as a whole.)
The reef mass possesses, by an indeterminate
amount, a lower mean strength, lower mean
density, and much higher mean porosity than
the test values indicate.

14
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|
E
;: Unceonfined compressive strength: mean 7.4 MPa
: | (1080 psi)
Bulk density: mean 1.76 * .13 gm/cm3
Apparent grain density: mean 2.24 * ,22
gm/cm3
t Unit weight (dry): mean 1.33 t .21 gm/cm3
: Selsmic: A seismic retraction survey was made at
. the Tugbcat site area in May 1969. Six 33.6 m
4 {11C f£t) lines were run parallel to the
revetment, one 200 m (650 ft) line was run
. ‘ oblique to the revetment, and a 252 m (825 ft)
traverse made up of three 83.9 m (275 ft)

segments was run oblique to the revetment and

All lines showea low-velocity material at
shallow depths, with P-wave velocities in the
range of 1535-1830 m/sec (5100-600C ft/sec)
(only slightly above the velocity of water,

| which is about 1525 m/sec [5000 ft/sec]).

| This material represents the coral reef. Only

the 200 m (650 ft) line effectively explored
material deeper than 30.5 m (100 ft) below the

':. ccean floor. This line detected the presence

i
i along the then-proposed channel alignment.

of higher velocity material at about 21.4 m
(70 ft) depth, 45.8 m (150 £t) trom the revet-
ment, sloping down to 33.6 m (110 ft) depth,
229 m (750 £t) from the revetment. This
material had an average velocity of 3248 m/sec
(10,650 ft/sec) and was presumed tc be the
basalt foundation on which the coral reef
rests. This higher velocity material was
detected only on this one 1line.

15
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The seismic data suggested considerable lateral
variation within the coral. The highest
velocity within the coral, 2208 m/sec (7240
ft/sec), was measured along the long axis of a

single, continuous coral reef.
2-4 HAKBOR DESIGN

The requirements for the harbor were for a 36.6 m
(120 ft) wide entrance channel and a berthing basin of at
least 5116 m2 (55,000 ftz), all at a minimum depth of
3.66 m (12 ft). The original design was done in 1969 and
was based on the chemical and nuclear experience to that
date. The design was, therefore, predicated on a "throw-
out" type of crater, shown in cross secton in Figure 1 and
as Curve A of Figure 2. The following were the scale
crater dimensions:
depth-of-burst = 42.7 m (140 ft)/ktl/3-4
apparent crater radius
= 61 m (200 ft)/ktl/3-4
D = apparent crater depth

= 27.5 m (90 f£t)/ktl/3+4

Hal = average crater lip height = 0.5 Da

L
(@)
(s}
nn

The preliminary design based on these scaled
crater dimensions utilized ten each, 10-ton charges to
provide an entrance channel 183 m (600 ft) long and 36.6 m
(120 ft) wide and ten each, 10-ton charges in two rows of
five each to provide a berthing kasin 100.7 m (330 ft)
long and 54.9 m (180 ft) wide. The actual depth-of-burst
and crater dimensions used in this design were:

16
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DOB = 11 m (36 ft)
Ra = 15.9 m (52 ft)
Da = 7 m (23 ft)
Hal = 3.66 m (12 ft)

A calibration series of shots including one
10-ton charge at the assumed optimum depth-of-burial of 11
m (36 ft) was planned because of lack of cratering experi-
ence with this material and with a water overburden.

2-5 CALIBRATION SERIES AND REDESIGN

The results of the calibration series (called
Phase 1) were completely unexpected and caused a radical
change in the project design for Phase II. The crater
resulting from the 10-ton detonation was flat and
saucer-shaped, with no lips (see Curve B of Figure 2).
The actual volume of the crater, measured with respect to
the original ocean floor, was three to four times that
expected on the basis of previous continental experience.
The result was actually very fortuitous for the project.
The wide, flat cross section was more desirable for this
type of harbor project than the expected bowl-shaped
ejecta crater, permitting a reduction from 20 to 12
charges of ten tons each in the final design. Figure 3
shows the final design configuration for the charges and
the harbor outline. The charges were each ten tons of
aluminized ammonium nitrate slurry emplaced with the
charge center 12.8 m (42 ft) below mean low-low water
(MLLW) . The explosive was pumped into a metal cannister
l.6 m (5 ft) in diameter and 3.36 m (11 ft) in height with
the hole backfilled with coral.

18
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Figure 3. Plan view of 10-ton charge locations for Phase II
(Day 1972)
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2-6 TECHNICAL PROGRAMS

Many programs of a technical nature were carried
out during the two-year period of Project Tuygboat. The
progarams conducted which are applicable to this comparison
study are triefly described in the following paragraphs.

Crater Measurements. Engineering surveys were

conducted to determine the crater profiles and the result-
ing entrance channel and harbor basin dimensions.

Seismic Motion Measurements. A comprehensive

seismic motion measurement program was undertaken during
both Phase I and II. The objective of the Phase I program
was to provide data as a function of yield, range, and
depth of burst specific to the site that was subsequently
used to determine the maximum safe yield for detonations
in Phase II. During Phase II, measurements were made to
verify safety predictions and to provide seismic motion
and structural response data as a function of range and
firing conditions.

Aerial Photography (Phase I and II) and Wave
Measurements (Phase I).

A program of motion picture aerial photography of
the Phase I and 11 detonations and a wave measurement pro-
gram during the Phase I detonations only were conducted.
The purpose of the photography was to provide documentation
of the late-time crater formation process and to view the
wave pattern produced by the detonations. The Phase I wave
measurement program provided the first known wave data for

underwater cratering detonations of significant yield.




Post-shot Engineering Properties Investigations.

A program of drilling and sampling in the crater
area was accomplished following the explosive excavation
detonations in the berthing basin area and in the channel
area to try to determine the extent of fracturing of the
coral.

2-7 PROJECT EXECUTION

The four charges which were to form the berthing
basin were detcnated in May 1970 (DETONATICN II-IJKL). An
interesting shock wave interaction pattern was observed at
the water surface for this detonation. Figure 4 shows
pictures copied from high-speed movie frames showing the
complex successive reinforcement and null pattern that
formed a cross between the four charge locations. This
phenomenon was investigated in detail ana can be explained
as being due to shock wave interacticn in the near-surface
water cavitated region over the charge locations. A
sequence of frames from the high-speed aerial movies of
this detonation will be examined in detail in Section
2-8. The film sequence from which the frames in Section
2-8 are extracted actually shows the late stages of the
crater formation in real time.

2-8 CRATER FORMATION IN REAL-TIME

The aerial photography of the berthing basin
detonation provided a unique opportunity to observe the
real-time transformation of a "conventional, bowl-shaped
ejecta or throwout crater" typical ot continental crater-
ing, into a flat, saucer-shaped crater similar to the
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Charge layout just prior to Deto- Aerial photo taken just after ﬁ
nation II-IJKL, detonation.

Detonation [I-IJKL showing
shock interaction and cavitation Changes in shock interaction and
phenomena at water surface. cavitation phenomena.

Figure 4. Shock wave interaction from detonation of four
berthing basing charges (Day 1972).
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nuclear-produced coral craters of the Pacific Proving
Grounds. The camera was mounted on a nonvibrating mount

in a helicopter, which hovered just out of ejecta range to
the south of the detonation. This produced an obligue

view of the crater with a changing scale due to the move-
ment of the helicopter. Although steam and ejecta obscured
the early stages of the cratering process, this cleared so
that the crater was visible at approximately 32 seconds
after the detonation. Because of the saturated nature of
the coral and the water overburden, there was no dust cloud
which normally obscures the cratered area for several min-
utes or longer after a continental cratering detonation.
The entire area around the shot point and out some distance
was essentially dewatered. Both the ejection process and
wave action from the blast contributed to the dewatering.
Ground-mounted cameras recorded a wave which moved out
radially from the shot point. This action is described

schematically in Figure 5.

Figure 6 is a photo, reproduced from the 72-frame/
second color movie film, taken at approximately 34 seconds
after the detonation. Although it is clearer and more
easily seen in the actual movie, the outline of a water-
filled crater is clearly visible as noted on the overlay
of Figqure 6. The diameter of the ejecta crater shown on
the overlay is approximately 76.3 m (250 ft); this is very
close to what would be predicted for this charge confiqu-
ration if it were detonated in a continental situation
using similar strength material, e.g., the saturated, wet-
clay shale of Fort Peck. Also visible upon close examina-
tion of the movie is a portion of the lip of the ejecta
crater. This is also detailed on the overlay to Figure 6.
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Figure 5. Generation of water wave by explosions beneath

the sea floor.
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The approximate charge locations have also been shown on
the overlay.

Twe other details are immediately obvious in
Figure 6, the "cross pattern" and the circular outline
with a diameter of about that of the final crater, i.e.,
about 183 m (600 ft). The cross pattern corresponds to
where the coral was very highly shocked and crushed by the
interaction of the shock waves noted in Figure 4. The
limit of the circular section is assumed to be the maximum
range at which the motion resulting from the detonation
was strong enough to crush or break the coral matrix. The
fact that the center, water-filled crater area is slightly
offset to the lower right of the photo, within the large
outer circle, is expected since the coral in this direction
was previously shocked by the detonation of the entrance
channel charges,

In the next 10-15 seconds of real time, it is
possible to observe in the movie the movement and slumping
downward and inward of the pie-shaped pieces outlined in
the overlay of Figure 6. This material, as noted in
Section 2-2, had a total water-filled porosity of over 50
percent. With the cementation between the coral heads and
pieces possibly broken by the explosion and the material
partially crushed, settling and flowing under the force of
gravity would be expected. This progressive action, as
clearly seen in the movie, can be followed in Figures 7
through 9. These frames from the movie cover approxi-
mately five seconds of real time. During this period the
material in the pie-shaped pieces flows inward and fills
the original water-filled ejecta crater (see center of
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Figure 6). The overlay on Figure 9 highlights the situa-
tion at T ~ 39 sec, i.e., five seconds after that shown in
Figure 6. Visibility of the details of the process is lost
at about 45 seconds after the detonation due to water
rushing back in to till the cratered area. Complex surface
motions and boiling action continued for some time in the
crater area, presumably indicating the settling action or
reconsolidation of the crushed coral under the influence of
gravity and the consequent squeezing out of the water from

the porous areas it had occupied prior to the detonation.

The rushing, washing action of the water as it
flowed back into the cratered area, as noted above, would
have carried with it any ejecta thrown beyond the crushed
zone, and completed the process of smoothing out the crater
or of converting it from the conventional, bowl-shaped,
throw-out crater to the flat, saucer-shaped crater observed
here at Project Tugboat and at the PPG nuclear craters.

2-9 CRATER CHARACTERISTICS

Several different types of investigation were
carried out at the Tugboat site after the detonations to
measure and record the post-shot conditions of the site
materials. These investigations included acoustic
sub-bottom profiling, probing, drilling, and underwater
photography.

Isopack maps were made from the fathometer and
tagline measurements taken immediately after the
detonations. These maps show the thickness of the
material displaced by the total cratering effort. The
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total volume of material excavated in Project Tugboat, as
determined from the isopack maps, was determined to be
105,000 m3 (Day 1972), which equates to a cratering
efficiency of 875 m3/ton (30,780 ft3/ton) based on the

120 tons of explosive used. Based on the original design
(Day 1972), which used clay shale experience (Johnson
1971), a volume of approximately 268 m3/ton (9450

ft3/ton) wae expected, indicating an enhancement or
increased effectiveness by a factor of 3.25. This may be
attributable to the crushing and compaction effect in coral
versus the "conventional throw-out mechanism" experienced
in continental cratering. The fathometer and tagline
surveys were repeated seven months after the detonation.
These surveys showed a general lowering of the bottom by
an average of two feet. Although some of this could be
attributed to washing and scouring action, long-term
settling effects were also noted during an acoustic survey
several days after the detonation. An anomalous noise was
noted in the center of the crater. Hydrophones, which
were then placed on the sea floor, detected sharp clicking
and snapping sounds, evidencing active settlement of the
crushed coral. If even one-half of the additional depth
of two feet noted after seven months was due to long-term
settling effects, the volume attributed directly to the
cratering would increase to 1100 m3/ton (38,780

ft3/ton) and the enhancement or increased effectiveness
would increase to approximately four times the expected
continental results.

2-10 ACOUSTIC PROFILING

Acoustic (seismic) sub-bottom profiling was
carried out both before and after each of the

36
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detonations. Two separate systems were used: an 8.5 kHz
(high-frequency) high-energy sonar and a 250 Hz (low-
frequency) l6-joule pulser system. The pulser records
were the more useful. 1In the December 1969 preshot
survey, a strong, reflecting horizon was detected approxi-
mately 30.5 m (100 ft) peneath the ocean surface. This
was interpreted as being the top of the basalt underlying
the coral. After the 10-ton calibration shot was fired,
two reflection survey lines were run across the crater.
The same strong reflection lines at about 30.5 m (100 ft)
depth were present but they were noted only at the ends of
the lines and were missing over the crater itself (see
Figure 10). The assumed reason for the lack of the basalt
reflection in the crater area was that the acoustic signal
was attenuated in the discontinuous fractured coral in and
adjacent to the crater. The presence or absence of the
basalt reflection thus offers a clue to the bounaary of
the rupture zone.

Results from the two survey lines also showed
three separate, strong, reflecting horizons defining the
crater itself. The deepest of these reflections, at

approximately 13.7 m (45 ft), was bowl-shaped with a small
depression in the center, and might indicate the boundary

of the true throw-out crater. The upper reflections,

which slope gently toward the crater center, evidently
represent sedimentary beds of materials which were

deposited following the blast (fallback material which
liquified and flowed back into the ejecta crater, and
washback.) Although it is conceivable that one or more of
these reflecting horizons could be due to multiple reflec-
tions, the clarity and longitudinal extent mitigates against
this possibility. Figure 10 shows the results of the acoustic

survey discussed above in schematic form.
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In the May 1970 surveys following the maln project
detonations, the basalt reflection showed up consistently
at the ends of the traverse lines, but failed to show up in
the central area of the craters. The sections of the line
profiles where the basalt reflections were missing, corre-
lated well with the outer limits of the flat, saucer-shaped

portions of the resulting craters,
2=11 PROBING

Hand probing of the crater from the 10-ton cali-
bration shot was conducted with a 1/2-inch pipe immedi-
ately after the detonation. It was possible to probe to
12.2 m (40 tt) below MLLW without difficulty. (Charge
center had been at 12.5 m [41 ft] below MLLW.) No boul-
ders or coral fragments were hit. A second probing was
tried approximately three weeks later. The maximum depth
which could be probed at this time was 10.4 m (34 ft),
probably due to an increase in density caused by settle-
ment and consolidation,

2-12 DRILLING

The planned drilling program following the deton-
ation was limited by both financial and technical con-
straints. The preshot drilling had shown that the material
was extremely difficult to core. Even in its undisturbed
state, all drill holes had to be cased to their full depth.
The probing after the detonation indicated a soft layer of
mud several feet thick over the area, which would have
made conditions difficult for firmly placing a drilling
platform. The acoustic profiling had indicated that the




coral had probably been shattered beth in the immediate
crater area and for some distance outward. Therefore,
coring was rejected since it was anticipatea that core
recovery would be even pocrer in the fallback, washback,
and blast-fractured materials than it had been in the
anaisturbed coral reef. To be successful in recovering
materials in an undisturbea state would have required a
large-aiameter tool ( >.15 m (e in]) and conceivably could
not have been accomplished short of a more sophisticated

technigue, such as freezing.

In an attempt to obtain some data, it was decided
to try a drive method of wash boring, with the hope that
the penetration resistance might give some indication of
the quality of the foundation with depth, and that the
wash borings would provide an indication of increased
density with depth. Although the penetration resistance
did give some indication of whether or not the material
had been crushed, and aided in the lateral determination
of the range of crushing, it was of no help in depth
determination. It was impossible to tell from the split-
spoon drive samples whether the coral materials had been
shattered by the blasts and whether they had been disrup-
ted or reoriented. Because of the large amount of fines
lost in the washing process, it was also impossible to
verify any degree of increased densification.
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SECTION 3

PACIFIC PROVING GROUNDS CRATERS

3-1 BACKGROUND

The nuclear tests conducted by the United States
in the Eniwetok and Bikini Atolls during the 1950's were
primarily device tests. Nevertheless, the craters pro-
duced by these detonations have assumed critical importance
in nuclear weapons effects planning, since they are basi-
cally the only nuclear surface burst craters available tor
evaluation. Two major problems have resulted from at-
tempting to use these craters ftor the effects data base.
First, since the cratering effect was not one of the objec-
tives of the tests, little attention was paid to geology,
ground motion, air and ground pressures, etc., all of which
are critical to effects prediction and theoretical model-
ing. Second, the detonations left wide, flat, saucer-
shaped craters which have considerably greater volumes
than those expected and calculated using computer codes
and calculational techniques based on more conventional,
dry-land cratering experience.

In addition to the general problems cited above,
analyzing these craters from the Pacific Proving Grounds
(PPG) itc confused by numerous other ftactors. Many of the
crater measurements were not made until years after the
detonations, by which time washing, wave action, and
erosion had probably affected the craters significantly.

e




The configuration of the tests varied considerably. Some
devices were fired in large, water-filled tanks, which
would tend to couple more energy into the ground and affect
the size of the crater expected. Some shots were fired in
towers, while others were located on barges. Two shots
may, therefore, have been equidistant above the coral
material being cratered, but the results would be expected
to be quite different due to the different density of the
intervening material, air or water. 1In several cases a
test was conducted sufficiently close to where a previous
device had been detonated that the craters overlapped, or
at least the second crater was formed in material previ-
ously shocked by high pressures. If the primary mechanisms
of formation for these craters are crushing, compaction,
and consolidation, as the investigation implies, the crater
from the second event would be expected to be smaller than
if it had been detonated over unperturbed coral material.

Considering all of the above factors, there is an
amazing consistency in the cratering results from the high-
yield shots at PPG, as discussed in Section 3-3. The cross
sections are quite similar - flat and saucer-shaped, with
a general lack of lip and upthrust around the craters; and
the "cratering efficiency" in terms of volume/ton is rela-
tively constant, with several explainable anomalies
(Ristvet 1978).

3-2 GEOLOGY

Various drilling and subsurface investigations of
the coral atolls throughout the Pacific have been conducted
(Ristvet 1978). The most consistent factor noted through-
out the reports on these investigations is the variation

.W_*Mw_;:::::!:fF"""“




of the coral material both vertically and horizontally,
even between drill holes with only a few meters separation.
g As discussed in Section 2, coral is remarkably different

B from other rocks. It is formed by the combination of many
lime-secretiny invertebrate marine animals (anthozoans or

\ polyps) and millipore algae plants (thallophytes). They
secrete an elaborate, rigid limestone latticework, which

: is highly porous, brittle, and easily broken when in the

( fresh state. As the network expands upward and outward,

l older forms die and gradually the dead base is buried by
the growth of other animals and by the abundant rock debris

that waves break from the living parts. The shells that

remain as the polyps die become filled with a saturated

solution of calcium carbonate or sand. Water and time
causes some of the material to harden while dissolving the
softer parts, thus leaving many holes and crevices.

Since the conjecture of this report is that the coral
is crushed and compacted or densified to a range and depth
corresponding to where the pressure (impulse) exceeds the
strength of the coral, the near-surface region is of
primary importance. A generalized model for the near-
sur face geology (Henny, Mercer, and Zbur 1974) is illus-
trated in Figure 1l1l. Figures 12 shows drilling data from
boreholes on Eniwetok Atoll. The upper region is comprised
of mostly soft and/or cavernous rock with a few thin, hard
layers. The average hard/soft ratio for the material from
0 to 335 m (1100 ft) below MLLW is 0.13 (Ristvet 1978).

The number of large voids and total or reef porosity is

not known but circulation loss in coral drilling operations
and poor core recovery is common, requiring consequent
casing of the holes.
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3-3 CRATER CONFIGURATIONS

The cross sections cof the PPG craters in coral
caused by high-yield aevices are flat and saucer-shaped
when compared to the bowl-shaped craters more commonly
found in continental cratering. Some generalized profiles
of PPG events are shown in Figure 13. The yield ana crater
dimensions for these events are listed in Table 1.

The KOA and SEMINOLE events should be eliminated
from an evaluation of crater efficiency since they were
tired in water-filled tanks, effectively coupling consid-
erably more energy into the ground than their nominal yield
would indicate. Considering the remaining eight events and
ignoring differences due to height-of-burst gives an aver-
age cratering efficiency factor of approximately 3.4 m3/
ton (120 ft3/ton), with a standard deviation of *1.3
m3/ton (46 ft3/ton). There are anomalies associated
with several of the other events which could also warrant
their exclusion from the list of calculating the average.
LACROSSE and CACTUS were relatively low-yield events and
it is possible that insufficient energy was coupled either
directly or by air blast overpressure to crush the coral
matrix much beyond the radius of the throw-out crater
range. Also they may have been on the reef rock which was
a relatively stronger material. Z2ZUNI, although a large event,
would be expected to produce a smaller crater if crushing and
compaction are the primary cratering mechanisms, since it was
detonated on the edge of the KOON crater. The area had already,
therefore, been subjected to high pressures and had consequently
been crushed and consolidated to some degree. If one eliminates

these events, the average cratering efficiency for the remaining
five events becomes 4 m3/ton (142 ft3/ton), + 1.2 m3/ton.
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SECTION 4

ANALYSIS AND COMPARISON

The fact that both an optimum depth, high-
explosive cratering experiment in coral (Project Tugboat)
and the Pacific Proving Grounds (PPG) nuclear detonations
over coral produced similarly shaped craters and, in the
first case, of larger size than expected, is of consider-
able significance in understanding and predicting the
cratering efficiency for nuclear surface bursts. An
analysis of the two cases indicates crushing and compac-
tion may be the dominant effect for producing the final
crater volumes. Based on a known relationship between
high-explosive cratering in coral and a similar continen-
tal material, a prediction is suggested for continental
nuclear, surface cratering efficiency using the PPG
results.

4-1 ASSUMED NUCLEAR CRATERING PROCESS

The following schematics show the assumed PPG
cratering process. The scenario is based on the Tugboat
high-speed movies of the high-explosive cratering process
in coral, the Tugboat seismic programs, and PPG seismic
surveys.

Figure l4a shows a generalized PPG predetonation
view. Figure 1l4b schematically indicates the energy
coupling from the device, both direct and air blast-
induced. Figure l4c depicts the ejecta cratering process,
showing the dewatering that takes place after a blast.
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Figure 14d shows numerous phenomena taking place as equili-
brium is being restored; the lip and crushed coral above
the bottom elevation of the open ejecta crater begin to
flow and level out, water is rushing back into the dewater-
ed area carrying ejecta back into the crater, and the
undisturbed but crushed coral is gradually settling under
the influence of gravity.

If it is assumed, as was observed on Tugboat, that
essentially all of the material ejected in the throw-out
crater process ends up back in the final crater, it must
also be assumed that the entire observed crater volume is
due to the settling and compaction (reconsolidation) of the
coral material crushed or liquefied by the shock wave from
the detaonation. This conclusion is depicted schematically
in Figure 15. Further credence is given to this conclusion
by the seismic results of Project Tugboat (Day 1972). These
seismic results are also shown graphically and explained
in Figure 15.

The existence of peak pressures of sufficient
magnitude to crush the coral matrix at large distances
into the ground under a nuclear detonation is predicted by
code calculations as shown in Figure 16. This figure
illustrates the results of the S-Cubed SOURCE 3/5
calculation (Rimer 1980) of a 1-MT nuclear surface burst

over wet tuff. The solid lines indicate the contours of
material processed by pressures equal to or exceeding the
indicated values. The dashed line shows the calculated
throw-out crater for this event, which represents an
efficiency of ~ 30 ft3/ton. The dashed-dot lines

indicate a possible "compaction" crater caused primarily by
the disruption of the coral matrix by the shockwave and its
subsequent reconsolidation.
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This compaction crater is basea on a purely
hypothetical model for compacting. The relative
compaction, §, following passage of a shock ot strength P

is assumed to be given by:

§=0 P g S 10 MPa (1450 psi)
§= 0.1 %ﬁ-?%?l, 10 MPa (1450 psi) = P__ <
. 1000 MPa (145,000 psx?‘
§ = 0.1 P oy 21000 MPa (145,000 psi)

That is, an amount of material having vertical extentAly,
processed by a shock of strength P, then is assumed to be
compacted on some time scale to a vertical extent of

(1- §)Ay. The degree of consolidation of the coral is
relatively independent of the peak stress once the matrix
is broken, i.e., all or nothing.

From the above analysis, it is concluded that al-
though the conventional throw-out crater process is
present, it contributes little to the ultimate crater
shape and volume. The final crater volume is three to
four times that expected, based on a throw-out crater
phase. The crushed coral and water mixture "liquefies"”
and, under the influence of gravity, flows to fill the
throw-out crater. After the coral settles, a resulting
flat, saucer-shaped crater is observed. The crater volume
is due to the reduction of porosity both on the micro-
scopic scale (solid, intact cores of coral have porosities
of 40-50 percent) and, perhaps more importantly, on the
macroscopic scale (the large voids and caverns within the
coral reef.) The high permeability of the coral allows
the water to flow out as the compaction proceeds.




4-2 COMPARISON OF HIGH-EXPLOSIVE AND NUCLEAR CRATERING
PROCESSES

There are major differences, e.g., pressure, temper-
ature, duration, etc., between the effects of a high-
explosive and nuclear cratering detonation, even when all
possible measures have been taken to attain simulation.
However, in comparing cratering efficiency, there are two
unique factors which suggest a direct extrapolation from
Project Tugboat to the PPG craters. There is a direct
comparison available between high-explosive cratering in
coral (Project Tugboat) and high-explosive cratering in a
dry-land medium of wet, soft rock (Fort Peck) (LaFrenz
1970). This wet, soft rock had approximately the same
characteristics as the coral except for the macroscopic
porosity, the high permeability, and the water overburden.
Cratering experience with the rock was used as the original
design basis for the coral cratering. The second factor
permitting comparison relates to the apparent mechanism by
which craters form in a coral medium.

The crushing of the coral by a shock wave and the
subsequent settling should occur regardless of whether the
shock wave traveled through the ground from the buried
charge or was air blast induced. Once the coral is
crushed, the remainder of the cratering sequence (shown
photographically in Figures 6 through 9, and schematically
in Figure 14) should proceed the same regardless of the
source type and location.

The comparison cycle shown in Figure 17, which is
based on the above factors, graphically depicts the
rationale justifying the prediction of paragraph 4-3 for
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continental cratering efficiency for nuclear surface
bursts. The existence of a throw-out crater for high-
explosive detonations, both from a surface-burst
continental condition and in the initial stages of the
optimum depth detonation in coral, lends further credence
to assuming the same comparison for the nuclear case.

4-3 PREDICTIONS FOR NUCLEAR CRATERING EFFICIENCY

There are many logical explanations for the wide
variation in the cratering efficiency for the various PPG
events (Ristvet et al., 1978; Brode 1979). The
heights-of- burst varied, some devices were suspended in
water tanks, massive concrete test stands were placed
adjacent to some devices, some devices were detonated in
areas already highly shocked by previous shots, and the
amount of water overburden varied from zero to several
hundred feet. All of these factors plus the variability
of the coral with depth and location require a heavy
judgment factor in determining an average cratering
efficiency factor. As discussed in paragraph 3-3, the PPG
cratering efficiency ranges from about 3.4 to 4 m3/ton
(120 to 140 ft3/ ton). If an average value of 3.7
m3/ton {130 ft3/ton) is used for PPG craters with the
conversion ratio of 4 (paragraph 2-9) for coral to wet
rock from high-explosive experience, an eguivalent
cratering efficiency for nuclear surface bursts over land
would be

3.7 m/ton (130 £t3/ton) at PPG

- 3 3
4 (conversion ratio) 0.9 m“/ton (32 ft”/ton

over land (wet, soft rock). This is shown diagrammatic-
ally in Fiqure 18, following the logic of paragraph 4-2.
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HE Nuclear
High explosive Nuclear over
in coral coral (PPG)
(Project Tugboat)
: Measured Measured
¢ ! 872 m3/ton 3.7 m3/ton
_ ‘ (30,800 ft3/ton) Calculated (130 £t3/ton)
1 factor
;- ‘ —1 ofa |--
&
3 High explosive Nuclear over
in shale continental
(Fort Peck) material
e Measured Predicted
- 267 m3/ton 0.9 m3/ton
: (9,450 £t3/ton) (32 £t3/ton)
‘ Calculations ;
Optimum DOB Nuclear Surface
T High Explosive Burst
B Calculated Calculated
283 m3/ton .85 m3/ton
(10,000 £t3/ton) (30 £t3/ton)

Figure 18. Predictions for nuclear surface burst
cratering efficiency in a continental
mode.




SECTION 5

SUMMARY AND CONCLUSIONS

5-1 SUMMARY

Project Tugboat was a high-explosive, optimum
depth-of-burial project done in coral overlaid with water
and executed on the west coast of Hawaii in 1970. The
original design of the project was based on throw-out
cratering experience in wet, soft rock which had mechan-
ical properties similar to the coral. The craters which
resulted from the detonation of the l0-ton charges in the
coral were wide, flat, and saucer-shaped instead of bowl-
shaped, as expected. The volume was approximately four
times larger than contemplated in the design, and appar-
ently came entirely from crushing, compaction, and settling
of the coral. This was verified by high-speed aerial

movies of the cratering process, post-shot surveys of the
craters, and post-shot seismic surveys of the material
beneath the crater.

The earliest aerial high-speed movie view of the
cratered area, once the steam and ejecta had cleared away,
shows the existence of a conventional throw-out crater
surrounded by a circular area of obviously crushed but
still relatively intact coral. As the movie progresses,
this crushed coral beyond the ejecta crater is observed to
collapse and flow into the deeper center ejecta crater.

The details of the process are then obscured as water
flows back into the dewatered area and into the crater:




B 4

however, the final crater dimensions correspond to the
radius of the crushed zone, as observed in the movie. The
final crater is flat and saucer-shaped. There was no
ejected material found above the original ocean bottom
elevation, indicating that the entire volume had to come
from a crushing, compaction, and consolidation process.

The seismic surveys showed dipping beds beneath the
cratered area, lending further support to the consoli-
dation-compaction hypothesis as the mechanism for producing

the crater volume.

The Tugboat experiments strongly suggest that the
crater shapes and sizes observed in the PPG high-yield
nuclear tests are due to the physical properties of the
wet coral in which these tests were conducted. 1t is
conjectured that the feature of wet coral sites which is
responsible for their characteristic craters is the large,
water-filled macroporosity of high permeability in a
brittle coral matrix. 1t is proposed that, in the forma-
tion of craters in wet coral, the coral matrix is broken
by the passage of the strong shock. The large macropo-
rosity and high permeability then lead to a separation of
grains and a consequent loss of strength.* In this state,
the broken coral should flow easily. Finally, the broken
coral matrix is expected to settle and compact to a state
of reduced porosity.

The knowledge and understanding gained from
Project Tugboat has been applied to the PPG craters sinrce
they are similar in shape and are in essentially the same
material and environment. Since the cratering mechanisms
apparently responsible for the final craters observed in

* Although the exact nature of the process or processes
involved is not known, some soil mechanics people would
call the entire process described above liquefaction.
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coral from an explosion are crushing and compaction, any
process - direct coupling or air-overpressure - which
deposits sufficient energy into the coral to accomplish
this should produce similar results.

CONCLUSIONS
An analysis of the nuclear surface-burst craters
at the PPG based on the information gained from Project

Tugboat has led to the following conclusions:

® Crushing, compaction, and settling of the

coral by the ground motion resulting from
direct energy coupling and the high-pressure
air blast could have formed the apparent

nuclear surface-burst craters at PPG.

Flat, saucer-shaped craters are due to the
physical properties of the wet coral medium.
The large crater volumes per ton of explosive
are due to the large, water- filled
macroporosity of the highly permeable brittle
coral matrix.

The shape and volume of the PPG craters are
not related to the throw-out cratering
phenomenon.

Calculational techniques based on the throw-
out approach to cratering and dry-land
cratering experience should not be expected to
replicate the PPG results.




" - L. - I I -

‘v

| emmem— e

® The average of 3.7 m3/ton (130 ft3/ton)
cratering efficiency for the PPG craters
eguates to approximately 0.9 m3/ton (32
ft3/ton) for craters in equivalent strength
dry-land material, if the same volume ratio
for high-explosive cratering (coral overlaid
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with water to equivalent strength material on
dry land) holds for nuclear, surface-burst
results.
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ATTN: P. Haas

Science Applications, Inc
ATTN: M. McKay
ATIN: Technical Library
ATTN: H. Wilson

Science Applications, Inc
ATTN: D. Maxwell
ATTN: D. Bernstein

Science Applications, Inc
ATTN: W. Layson

Southwest Research Institute
¢ W. Baker
ATTN: A. Wenzel

SRI International
ATTN: G. Abrahamson

Systems, Science 4 Software, Inc
TIN: T. Riney
ATTN: K. Pyatt
ATTN: Library
ATIN: T. Cherry
ATTN: D. Grine
4 cy ATTN: R. Lafrenz

Terra Tek, Inc

ATTN: Library
ATTN: S. Green
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DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Tetra Tech, Inc
ATTN: L. Hwang

TRW Defense & Space Sys Group
ATIN: E. Wong
ATTN: P. Dai

TRW Electronics & Defense Sector
TTN: 1. Alber
ATTN: R. Plebuch
ATTN: Technical Information Center
ATIN: D. Baer
2 ¢y ATIN: N. Lipner

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Universal Analytics, Inc
ATTN: E. Field

Weidlinger Assoc, Consulting Engrg
ATTN: J. Wright
ATTN: M. Baron

Weidlinger Assoc, Consulting Engrg
ATTN: J. Isenberg
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